Smoothing imprecise 1-dimensional terrains
نویسندگان
چکیده
An imprecise 1-dimensional terrain is an x-monotone polyline where the y-coordinate of each vertex is not fixed but only constrained to a given interval. In this paper we study four different optimization measures for imprecise 1-dimensional terrains, related to obtaining smooth terrains. In particular, we present algorithms to minimize the largest and total turning angle, and to maximize the smallest and total turning angle.
منابع مشابه
Smoothing Imprecise 1.5D Terrains
We study optimization problems for polyhedral terrains in the presence of data imprecision. An imprecise terrain is given by a triangulated point set where the height component of the vertices is specified by an interval of possible values. We restrict ourselves to terrains with a one-dimensional projection, usually referred to as 1.5-dimensional terrains, where an imprecise terrain is given by...
متن کاملSmoothing Imprecise 1.5d Teeeains *
We study optimization problems for polyhedral terrains in the presence of data imprecision. An imprecise terrain is given by a triangulated point set where the height component of the vertices is specified by an interval of possible values. We restrict ourselves to terrains with a one-dimensional projection, usually referred to as 1.5-dimensional terrains, where an imprecise terrain is given by...
متن کاملIntroduction to a simple yet effective Two-Dimensional Fuzzy Smoothing Filter
Annihilation or reduction of each kind of noise blended in correct data signals is a field that has attracted many researchers. It is a fact that fuzzy theory presents full capability in this field. Fuzzy filters are often strong in smoothing corrupted signals, whereas they have simple structures. In this paper, a new powerful yet simple fuzzy procedure is introduced for sharpness reduction in ...
متن کاملRemoving local extrema from imprecise terrains
In this paper we consider imprecise terrains, that is, triangulated terrains with a vertical error interval in the vertices. In particular, we study the problem of removing as many local extrema (minima and maxima) as possible from the terrain. We show that removing only minima or only maxima can be done optimally in O(n log n) time, for a terrain with n vertices. Interestingly, however, removi...
متن کاملFlow Computations on Imprecise Terrains
We study water flow computation on imprecise terrains. We consider two approaches to modeling flow on a terrain: one where water flows across the surface of a polyhedral terrain in the direction of steepest descent, and one where water only flows along the edges of a predefined graph, for example a grid or a triangulation. In both cases each vertex has an imprecise elevation, given by an interv...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2008